NOvA Offaxis Totally Active Detector

Stanley Wojcicki

Stanford University

(with much help from Leon Mualem, George Irwin and

Robert Hatcher)

NOvA Collaboration Meeting

Fermilab

May 13, 2004

Outline

- Parameters of the Detector
- Description of Analysis
- Detector Performance
- First Results from Simulations
- Posible Improvements in Analysis
- Future

Detector Parameters

- 2000 planes, alternating in x and y
- Each plane is 17.5 x 17.5 m
- Each plane has 14 extrusion
- Each extrusion has 32 cells, filled with liquid scintillator
- Cell dimensions are 3.8 x 4.5 cm
- Extrusion walls are 1 mm on the inside,
 2mm on the outside

Detector (ctd)

- These parameters result in a detector of about 26 kt
- The non-active mass is about 13%
- A crude cost estimate give a total cost for such a detector that is roughly the same as baseline detector of 50 kt
- The simulations are based on a total mass of 25 kt

Outline of Analysis

- Initial reconstruction
 - Up to 4 tracks are found (>6 hits)
 - A quadratic fit is made, ph weighted in each plane
 - Each projection is treated independently
- A vertex is calculated (or defined)
- Assignment of particle identity is made based on a set of track parameters calculated
 - Particles are labeled as e, μ, p, or γ
 - Only 1 e, μ, or p are allowed
 - If 2 or more satisfy e criteria, the "best" one is chosen
- Ntuple file is written out with track parameters and converted to root format

Analysis (2nd stage)

- Initial sample of e candidate events is selected, requiring:
 - Electron track in each view
 - Energy in right range
 - No μ or γ in event
 - No significant separation of "electron" from the vertex
 - No gaps near vertex
- Subsequent analysis is based on maximum likelihood method using about 9-14 different variables describing track and event "nature"
- So far only 1D distributions have been used in maximum likelihood calculation.
- In parallel there is also cuts-only analysis

Detector Performance

- To give an idea of the performance of this detector we show next several relevant distributions:
 - Energy resolution for electron events
 - Electron/muon comparison for several variables used in ML calculation
 - Comparison of several distributions used in ML for both signal and background events (NC and CC only, except for energy)

True Energy Distributions

Measured Energy Distributions

True and measured energies

Energy Resolution - 2

Summary Distributions

Electron/muon comparison (avg pulse height and no hits)

Electron/muon comparison (no of gaps and average rms)

Signal/background (energy and measured "y")

Signal/background (track length and ph in front)

Simulation Results

- We show the results of the first simulation for this detector using the method described
- The results have to be considered quite preliminary at this time
- They are based on 10k events for v_e CC (signal and beam v_e background), and 10k each for NC (E_v<6 GeV), NC (all) and v_μ CC.

Input Conditions

- Detector 810 km away and at 12 km transverse distance
- Total mass is 25 kt
- Running time is 5 yrs, 3.7 x 10²⁰ ppy
- Latest Messier spectra are used
- "Small" contributions (antineutrinos, NC from v_e are not included)
- $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $P(v_{\mu} v_e) = 0.05$

Signal/background relative probabilities

FOM and backgrounds vs no of signal events

Cuts-only Analysis

SUMMARY OF CUTS

```
total count = 312.857 92.803 1232.33 3569.47 FOM= 4.47185
early cuts, no leak = 176.786 72.305 866.483 3027.41 FOM= 2.80712
electrons, no leak, early cuts = 176.786 + 49.0402 + 113.258 + 565.93 + FOM= 6.5511
no coherent = 140.047 13.5834 48.8582 168.928 FOM= 9.20708
917
+ track length = 116.291 9.96149 13.2482 55.3218 FOM= 13.1227
+ \text{ avg ph} = 114.464 \quad 9.77663 \quad 10.8854 \quad 49.18 \quad \text{FOM} = 13.6966
```

- + ph frac = 101.967 8.16796 4.46897 14.9083 FOM= 19.4284
- + curvature, asymm = 90.6567 7.27035 2.35719 6.84207 FOM= 22.3387
- + ph front, ph unusd = 86.3847 7.02798 0.945093 6.03828 FOM= 23.0779
- + quasielastics = 86.3847 7.02798 0.945093 6.21868 FOM= 22.9308

Possible Future Improvements

- Take account of inert material
- More sophisticated method of selecting electron (if >1 candidate)
- More sophisticated γ definition and its use
- Better track reconstruction (see sample of events to follow)
- Use of correlated distributions in ML and/or possibly neural network
- An alternative, more sophisticated, approach to pattern recognition

Examples of Events

- We first show some NC and v_{μ} CC events which pass our cuts
- Bear in mind that these are roughly 1 per mil
- Then we shall show v_e CC events in the energy range of interest which fail in reconstruction (no electron found)
- These are relatively typical; chosen only to demonstrate different categories of failures

And now some failing v_e CC events

And now as antidote:

First 20 passing v_e CC events

Good v_e CC events (1)

Good v_e CC events (2)

Good v_e CC events (3)

Good v_e CC events (4)

Good v_e CC events (5)

Other Possible Physics Measurements

- Could measure θ₂₃ much better quasielastics are well measured and constrained
- ∆m²₂₃ could be also measured better, less uncertainty on energy scale
- Could set better limits on sterile v contribution
 should have subset of very clean NC events
- Quasielastic v_{μ} 's are very clean two examples follow

Measurement of θ_{23} and Δm^2_{23}

Other advantages

- Cosmic ray background drastically reduced; hence need for overburden is less likely
- Because of good energy resolution data can be divided by energy
- Not restricted by particle board sizes; more freedom in choice of detector dimensions
- Fiber, electronics cost inversely proportional to area of cell -> more freedom in choice of cell dimensions. Maybe other dimensions are better than 3.9x2.8 (more light/cell, better transverse segmentation)
- Near Detector becomes simpler and more like far detector; less need to measure NC and CC

Dividing data into 2 energy bins

Dividing data into 3 energy bins

Conclusions

- The initial round of simulations shows that this approach could have significant advantages over the current baseline design
- There is still a lot of room for improvement in analysis, probably also in choice of hardware parameters
- Additional steps that should be taken next are:
 - Understanding of construction and installation issues
 - Optimizing the design, eg packaging of electronics
 - Obtaining reliable cost estimate